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1 Introduction

Numerical simulation of hyperbolic conservation laws has been a major research
and application area of computational mathematics in the last few decades.
Weighted essentially non-oscillatory (WENO) finite difference/volume schemes
are a popular class of high order numerical methods for solving hyperbolic par-
tial differential equations. They have the advantage of attaining uniform high
order accuracy in smooth regions of the solution while maintaining sharp and
essentially monotone transitions of discontinuities. The first WENO scheme
was constructed in [16] for a third order accurate finite volume version. In [14],
third and fifth order finite difference WENO schemes in multi-space dimensions
were constructed, with a general framework for the design of the smoothness
indicators and nonlinear weights. Later they were executed on unstructured
meshes for dealing with complex on structured grids with geometric domains
[9, 28]. For steady state problems of hyperbolic conservation laws, efficiently
solving the large nonlinear system derived from the WENO discretization is still
a challenging problem. A high order residual distribution conservative finite dif-
ference scheme for solving the steady state problems was proposed in [4]. Later,
[27] introduced a new smoothness indicator, which removed the slight post-
shock oscillations and improved the convergence. A Newton-iteration method
was adopted to solve the steady two dimensional Euler equations [10, 11, 13].
The matrix-free Squared Preconditioning is applied to a Newton iteration non-
linearly preconditioned by means of the flow solver in [12].

Discretizing many systems of nonlinear differential equations produce sparse
polynomial systems. Numerical algorithms based on techniques arising in alge-
braic geometry, collectively called numerical algebraic geometry, have been de-
veloped to solve polynomial systems. Over the last decade, numerical algebraic
geometry (see [15, 22, 25] for some background), which grew out of continuation
methods for finding all isolated solutions of systems of nonlinear multivariate
polynomials, has reached a high level of sophistication. Even though the poly-
nomial systems that arise by discretizing differential equation system are many
orders of magnitude larger than the polynomial systems that the algorithms of
numerical algebraic geometry have been applied to, these algorithms can still
be used efficiently to investigate such polynomial systems.

The major tool in numerical algebraic geometry is homotopy continuation.
For a given system of polynomial equations to be solved, a homotopy between
the given system and a new system (which is easier to solve and share many
features with the former system) can be constructed (see §3 for a detailed de-
scription of this method in this context). Then, one tracks paths starting from
each solution of the new system as one moves towards the original system along
the homotopy obtaining solutions of the original system. The homotopy method
computes all the complex (which obviously include real) solutions of a system
which is known to have only isolated solutions. In this paper, we utilize homo-
topy continuation method to compute steady states of hyperbolic systems and
demonstrate that this new approach is good to handle singular systems and can
be used to find the multiple steady states. The numerical experiments show
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that the homotopy method is competitive with the Newton methods [10, 11, 13]
and is faster than the classical time marching methods.

The organization of the article is as follows. We propose a numerical algo-
rithm based on homotopy continuation in §2. In §3, we describe homotopy con-
tinuation and endgames. Extensive numerical simulation results are contained
in §4 for one and two-dimensional scalar and system steady state problems to
demonstrate the behavior of our scheme. We conclude in §5.

2 Numerical methods

In this article, we solve both one-dimensional and two-dimensional steady state
hyperbolic conservation laws. We use a third-order accurate finite difference
WENO schemes with Lax-Friedrichs flux splitting to discretize the PDEs. The
advantage of using finite difference WENO scheme is that we can perform the
WENO reconstructions in a dimension-by-dimension manner, to achieve better
efficiency compared with than a finite volume WENO scheme [14]. We will
describe the imposed scheme for solving one-dimensional problems. For multi-
dimensional problems, we simply adopt the dimension-by-dimension splitting
approach.

Consider the following one-dimensional hyperbolic conservation laws

ut +
(
f(u)

)
x

= g(u, x).

Setting ut to zero, the steady state problem becomes

(
f(u)

)
x
− g(u, x) = 0.

For an initial condition u0, we introduce the homotopy

H(u, ǫ) =
((

f(u)
)
x
− g(u, x) − ǫuxx

)
(1 − ǫ) + ǫ(u − u0) ≡ 0, (2.1)

where ǫ is a parameter between 0 and 1. In particular, when ǫ = 1, the initial
condition automatically satisfies (2.1) and, when ǫ = 0, (2.1) becomes the steady
state problem.

To compute using (2.1), we discretize using the uniform grid {xi}i=0,...,N

with corresponding grid function {ui}i=0,...,N . The finite difference scheme with
Lax-Friedrichs flux for (2.1) becomes

H(u, ǫ) =(
bf
i+ 1

2

− bf
i−

1
2

h − g(ui, xi) − ǫui+1+ui−1−2ui

h2

)
(1 − ǫ) + ǫ(ui − u0) ≡ 0

(2.2)

where u = (u0, . . . , uN )T and h is the uniform stepsize in the grid. Here, the
derivative f(u)x at xi is approximated by a conservative flux difference

f(u)x

∣∣∣∣
x=xi

≈ 1

h

(
f̂i+1/2 − f̂i−1/2

)
, (2.3)
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where, for the third order WENO scheme, the numerical flux f̂i+1/2 depends on
the three-point values f(ul), l = i−1, i, i+1, when the wind is positive (i.e., when
f ′(u) ≥ 0 for the scalar case, or when the corresponding eigenvalue is positive
for the system case with a local characteristic decomposition). This numerical

flux f̂i+1/2 is written as a convex combination of two second order numerical
fluxes based on two different substencils of two points each, and the combination
coefficients depend on a “smoothness indicator” measuring the smoothness of
the solution in each substencil. The detailed formulae is

f̂i+1/2 = w0

[
1

2
f(ui) +

1

2
f(ui+1)

]
+ w1

[
−1

2
f(ui−1) +

3

2
f(ui)

]
, (2.4)

where

wr =
αr

α1 + α2
, αr =

dr

(ǫ̃ + βr)2
, r = 0, 1. (2.5)

The numbers d0 = 2/3 and d1 = 1/3 are called the “linear weights” while
β0 = (f(ui+1)− f(ui))

2 and β1 = (f(ui)− f(ui−1))
2 are called the “smoothness

indicators.” The small positive number ǫ̃ is chosen to avoid the denominator to
be 0. We take ǫ̃ = 10−6 in this article.

When the wind is negative (i.e., when f ′(u) < 0), a right-biased stencil with
numerical values f(ui), f(ui+1), and f(ui+2) are used to construct a third order

WENO approximation to the numerical flux f̂i+1/2. The formulae for negative
and positive wind cases are symmetric with respect to the point xi+1/2. For the
general case of f(u), we perform the “Lax-Friedrichs flux splitting”

f+(u) =
1

2
(f(u) + αu), f−(u) =

1

2
(f(u) − αu), (2.6)

where α = maxu |f ′(u)|. The positive wind part is f+(u) while f−(u) is the
negative wind part. Corresponding WENO approximations are applied to find
numerical fluxes f̂+

i+1/2 and f̂−
i+1/2 respectively. See [14, 20, 21] for more details.

We utilize homotopy continuation for the homotopy H(u, ǫ) to track the
solution starting at the initial condition as ǫ decreases from 1 to 0 to obtain a
steady state solution. In order to avoid singularities during the path tracking,
we add a random complex number γ into the homotopy function, i.e.,

H(u, ǫ) =(
bf
i+ 1

2

− bf
i−

1
2

h − g(ui, xi) − ǫui+1+ui−1−2ui

h2

)
(1 − ǫ) + γǫ(ui − u0) ≡ 0.

(2.7)

This remarkable technique of utilizing a randomly chosen complex number γ,
called the γ-trick in the literature, makes sure that there are no singularities
or bifurcations along the path. This γ-trick is an illustration of the use of
so-called probability-one methods [22]. The significant advantage of homotopy
method to compute steady state solutions is free of Courant-Friedrichs-Lewy
(CFL) condition, namely, ǫ does not have to take small step size to satisfy the
CFL condition. Thus the convergence of homotopy method is much faster than
the time marching method.

4



We summarize our homotopy continuation approach for computing steady
state solutions in the following algorithm and expand upon the steps in the
following section.

Algorithm 1: Homotopy continuation to compute steady state solutions

Input : The initial condition u0 as the solution of H(u, 1); the
maximum step size during the path tracking; ǫend: a number
between 0 and 1 which indicates where to start the endgame
algorithm.

Output: A steady state solution
Set ǫ = 1
while ǫ >= ǫend do

set the stepsize ∆ǫ by using adaptive stepsize control algorithm;
use predict/correct method to compute the solution for ǫ + ∆ǫ.

end

Run the endgame algorithm.
Set the imaginary part of the solution to H(u, 0) to zero and refine.

3 Numerical homotopy tracking

In this section, we outline the numerical method for one of the most power-
ful tools in numerical algebraic geometry, the so-called homotopy continuation
tracking. We give a brief explanation as to the principles and algorithms in-
volved as well as advertise some available software packages.

We consider a general homotopy H(u, t) = 0, where u is the variable and
t ∈ [0, 1] is the path tracking parameter. When t = 1, we assume that we have
known solutions to H(u, 1) = 0. The known solutions are called start points
and the system H(u, 1) = 0 is called the start system. At t = 0, we recover the
original system that we want to solve, called the target system. The problem of
getting the solutions of the target system now reduces to tracking solutions of
H(u, t) = 0 from t = 1 where we know solutions to t = 0. The numerical method
used in path tracking from t = 1 to t = 0 arises from solving the Davidenko
differential equation:

dH(u(t), t)

dt
=

∂H(u(t), t)

∂u

du(t)

dt
+

∂H(u(t), t)

∂t
= 0.

In particular, path tracking reduces to solving initial value problems numerically
with the start points being the initial conditions. Since we also have an equa-
tion which vanishes along the path, namely H(u, t) = 0, predictor/corrector
methods, such as Euler’s predictor and Newton’s corrector, are used in prac-
tice to solve these initial value problems. Additionally, the predictor/corrector
methods are combined with adaptive stepsize and adaptive precision algorithms
[2, 3] to provide reliability and efficiency.

Even though high-order prediction methods are used in practice, we will
focus on Euler’s method for simplicity. Both prediction based on Euler’s method
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and correction based on Newton’s method arise from considering the following
local model obtained via a Taylor expansion:

H(u + ∆u, t + ∆t) ≈ H(u, t) +
∂H

∂u
(u, t)∆u +

∂H

∂t
(u, t)∆t.

If we have a solution (u, t) on the path, that is, H(u, t) = 0, one may predict
to a new solution at t + ∆t by setting H(u + ∆u, t + ∆t) = 0 and solving the
first-order terms to obtain Euler’s method, namely

∆u = −
(

∂H

∂u
(u, t)

)−1 (
H(u, t) +

∂H

∂t
(u, t)∆t

)
. (3.8)

On the other hand, if H(u, t) is not as small as one would like, one may
hold t constant by setting ∆t = 0 and solving the first-order terms to obtain
Newton’s method, namely

∆u = −
(

∂H

∂u
(u, t)

)−1

H(u, t). (3.9)

The main concerns for implementing a numerical path tracking algorithm is to
decide which predictor/corrector method to employ, how large to take the step
∆t, and what precision is needed to provide reliable computation. See [3, 22] for
more details regarding the construction and implementation of a path tracking
algorithm.

The basic idea for a path tracking algorithm is as follows. If the initial
prediction is not adequate, the corrector fails and the algorithm responds by
shortening the stepsize to try again. For a small enough step and a high enough
precision, the prediction/correction cycle must succeed and the tracker advances
along the path. Moreover, for too large a stepsize, the predicted point can be far
enough from the path that the rules set the precision too high that the algorithm
fails before a decrease in stepsize is considered. So we employ adaptive path
tracker [2, 3] that adaptively changes the stepsize and precision simultaneously.
This adaptive path tracker increases the security of adaptive precision path
tracking while simultaneously reducing the computational cost.

We shall not discuss the actual path tracking algorithms further, but it is
important to mention that these algorithms are designed to handle almost all
apparent difficulties such as tracking to singular endpoints. When the endpoint
of a solution path is singular, there are several approaches that can improve the
accuracy of its estimate. All the singular endgames [17, 18, 19] are based on
the fact that the homotopy continuation path u(t) approaching a solution of
H(u, t) = 0 as t → 0 lies on a complex algebraic curve containing (u, 0). For a
singular endpoint, Newton’s method applied to solve H(u, 0) is no longer satis-
factory since it loses its quadratic convergence or even diverges. The problem
of slow convergence would be expected since the prediction along the incoming
path may give a poor initial guess. Therefore, we need a different strategy than
nonsingular endpoints to deal with singular solutions, which are called endgame
algorithms.
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All singular endgames estimate the endpoint at t = 0 by building a local
model of the path inside a small neighborhood containing t = 0. First, due to
slowly approaching singular solutions, the endgames sample the path as close as
possible to t = 0. The simplest endgame approach is to simply track the path
as close to t = 0 as possible using extended precision to attempt obtaining the
same accuracy as a nonsingular solution. The Cauchy integral endgame [17] is
based on the use of the Cauchy Integral Theorem to estimate the solution of
H(u, 0) = 0. The Cauchy Integral Theorem states that

u(0) =
1

2πc

∫ 2πc

0

u
(
Re

√
−1θ

)
dθ,

where c is the winding number. Because of periodicity, the trapezoid method
is an excellent scheme used to evaluate this integral which yields an estimate
of u(0) with error of the same magnitude as the error with which we know the

sample values u
(
Re

√
−1θ

)
.

In summary, the numerical strategy of the Cauchy endgame is to first track

u(t) until t = R for some R ∈ (0, 1). We then track u
(
Re

√
−1θ

)
as θ varies,

to both determine the winding number c and to collect samples around this
circular path. There are several good ways to determine c, with one obvious
option being to directly measure the winding number by tracking a circular
path, t = Re

√
−1θ until the path closes up at θ = 2πc with c a positive number,

namely, with u
(
Re2πc

√
−1

)
= u(R).

We refer to [17, 18, 19, 22] for more on endgame methods such as the power-
series method and the clustering or trace method. Many of these endgames are
implemented in several sophisticated numerical packages well-equipped with
path trackers such as Bertini [1], PHCpack [24], and HOMPACK [26]. Their
binaries are all are available as freeware from their respective research groups.

4 Numerical results

In this section, we provide numerical experimental results to demonstrate the
behavior of the homotopy method. In some examples, we compare this method
with the classical time marching method, which uses the third order Runge-
Kutta method. All the examples are run on a Xeon 5410 processor running
64-bit Linux.

4.1 One-dimensional scalar problems

4.1.1 Example 1

Consider the steady state solutions of the Burgers equation with a source term

ut +

(
u2

2

)

x

= sin(x) cos(x), x ∈ [0, π]
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with initial condition u(x, 0) = β sin(x) and boundary condition u(0, t) =
u(π, t) = 0. This problem was studied in [23] as an example of a problem with
a unique steady state for a given initial condition. The steady state solution to
this problem depends upon the value of β: a shock forms within the domain if
β ∈ [−1, 1]; otherwise, the steady state solution is smooth. In particular,

u(x,∞) =

{
sin(x) x < xs

− sin(x) x > xs
, (4.10)

where xs, the “shock” location, is π − sin−1
(√

1 − β2
)
.

In order to test the order of accuracy to a smooth steady state solution, we
take β = 2 yielding u(x,∞) = sin x. We use our homotopy method with the
Lax-Friedrichs WENO3 fluxes, and present the numerical results in Table 1.
The convergence to third order accuracy of L1 and L∞ error is clearly observed
from these data.

Table 1: Errors and numerical orders of accuracy of WENO3 scheme for Exam-
ple 4.1.1 with N points

N L1 error Order L∞ error Order computing time
homotopy time marching

20 3.68e-2 – 1.55e-2 – 2.87s 10.14s
40 7.49e-3 2.30 4.38e-2 1.83 6.28s 24.69s
80 1.21e-3 2.63 9.12e-3 2.26 9.01s 30.12s
160 1.71e-4 2.82 1.60e-3 2.51 20.03s 59.10s
320 2.18e-5 2.97 2.24e-4 2.84 49.28s 134.23s
640 2.76e-6 2.98 2.90e-5 2.95 189.14s 342.49s

4.1.2 Example 2

We consider the same problem as in Example 4.1.1, but take β = 0.5 in the
initial condition. As mentioned in the previous example, a shock will form
within the domain, which separates branches of the steady state. For this value
of β, the shock is located at 2.0944. Figure 1 displays the numerical solution
for different values of ǫ. Additionally, we verify that the numerical shock is at
the correct location and is resolved well for ǫ = 0.

The convergence of the solutions with respect to ǫ for various β is plotted in
Figure 2. Here u(x, ǫ) is the solution of homotopy function H(u, ǫ) in (2.2). In
this case, a sequence u(x, ǫn) converges to u(x, 0). In Figure 2, ‖u(x, ǫ)−u(x, 0)‖
is the L2 norm of the difference of u(x, ǫ) and u(x, 0). The step size of ǫ is
determined by the adaptive path tracking method. In summary, this shows
that the homotopy method converges to the steady states in roughly 10 to 20
steps.
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Figure 1: The real part and imaginary part of numerical solution along path
tracking from ǫ = 1 to 0 with 200 grid points. For ǫ = 0, the real part of
numerical solution (stars) is compared with the exact solution (solid line), while
the imaginary part goes to 0.

4.1.3 Example 3

We consider the steady state solutions of the Burgers equation with a different
source term, namely

ut +

(
u2

2

)

x

= − π cos(πx)u, x ∈ [0, 1]

with the boundary conditions u(0, t) = 1 and u(1, t) = −0.1, and initial condi-
tion

u(x, 0) =

{
1 x < 0.5

−0.1 x ≥ 0.5
. (4.11)

This problem has two steady state solutions with shocks, namely

u(x,∞) =

{
1 − sin(πx) x < xs

−0.1 − sin(πx) x ≥ xs
, (4.12)

with xs = 0.1486 for one and xs = 0.8514 for the other.
Both solutions satisfy the Rankine-Hugoniot jump condition and the entropy

conditions, but only the one with the shock at 0.1486 is stable for small pertur-
bation. This problem was studied in [5] as an example of multiple steady states

9



00.20.40.60.8
0

2

4

6

ε

||u
(x

,ε
)−

u(
x,

0)
||

20 steps for ε tracking, β=0

00.20.40.60.8
0

2

4

6

ε

||u
(x

,ε
)−

u(
x,

0)
||

18 steps for ε tracking, β=0.5

00.51
0

2

4

6

ε

||u
(x

,ε
)−

u(
x,

0)
||

15 steps for ε tracking, β=1.5

00.51
0

5

10

ε

||u
(x

,ε
)−

u(
x,

0)
||

14 steps for ε tracking, β=2

Figure 2: The convergence of solutions with respect to ǫ for different β with 100
grid points. The maximum stepsize is 1/10.

for one-dimensional transonic flows. The classical method [4] shows that the
numerical solution converges to the stable one when starting with a reasonable
perturbation of the stable steady state.

However, with some minor modifications, our homotopy method can find
all the steady state solutions when ǫ approaches zero. To accomplish this, we
first compute all solutions of the the polynomial system (2.2) for ǫ = 0.1 using
bootstrapping method [6]. Table 2 shows the number of complex solutions at
ǫ = 0.1 and the real solutions produced at ǫ = 0. This table clearly demonstrates
that there are 2 steady states, which are displayed in Figure 3. Both solutions
satisfy the Rankine-Hugoniot jump condition and the entropy conditions, but
only the one with the shock at 0.1486 is stable by giving a small perturbation,
which can test stabilities of steady state solutions [7, 8].

4.2 One-dimensional systems

4.2.1 Example 4

We next consider the steady state solutions to the one-dimensional shallow water
equation

(
h
hu

)

t

+

(
hu

hu2 + 1
2gh2

)

x

=

(
0

−ghbx

)
, (4.13)
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Table 2: Number of solutions for example 4.1.3
# of grid points # of complex solutions # of real solutions

for ǫ = 0.1 for ǫ = 0
10 256 32
20 169 20
40 34 6
80 20 3
160 2 2
320 2 2

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

x

u

 

 

Exact
Numerical

0 0.5 1
−1

−0.5

0

0.5

1

x

u

 

 

Exact
Numerical

Figure 3: Steady state solutions for Example 4.1.3: the one on the left is stable
while the one on the right is unstable.

where h denotes the water height, u is the velocity of the fluid, b(x) represents
the bottom topography, and g is the gravitational constant.

We consider the smooth bottom topography given by

b(x) = 5e−
2
5
(x−5)2 , x ∈ [0, 10].

The initial condition we consider is the stationary solution

h + b = 10, hu = 0

with the exact steady state solution imposed by the boundary condition. By
starting from a stationary initial condition, which itself is a steady state solution,
we can check the order of accuracy. In particular, we tested our method using
the third order WENO scheme with the numerical results displayed in Table 3.
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This clearly shows the third order of accuracy of both L1 and L∞ error. The
convergence of the solutions is presented in Figure 4.

Table 3: Errors and numerical orders of accuracy for the water height h using
the homotopy method with WENO3 scheme for Example 4.2.1 with N points

N L1 error Order L∞ error Order
20 2.23e-1 – 4.28e-1 –
40 4.42e-2 2.23 5.81e-2 2.88
80 6.18e-3 2.84 8.04e-3 2.85
160 8.16e-4 2.92 9.12e-3 3.14
320 1.05e-4 2.95 1.15e-3 2.99
640 1.29e-5 3.02 1.45e-4 2.98
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||u
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u(
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0)
||

25 steps for ε tracking

Figure 4: The convergence of solutions with respect to ǫ with 100 grid points
for example 4.2.1. The maximum stepsize is 1/10.

4.2.2 Example 4

We next test our scheme on the steady state solution of the one-dimensional
nozzle flow problem




ρ
ρu
E




t

+




ρu
ρu2 + p
u(E + p)




x

= −a′(x)

a(x)




ρu
ρ2u

u(E + p)


 , (4.14)
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where ρ denotes the density, u is the velocity of the fluid, E is the total energy,
γ is the gas constant, which is taken as 1.4, p = (γ − 1)(E − 1

2ρu2) is the
pressure, and a(x) represents the area of the cross-section of the nozzle. We
follow the setup of [4]: starting with an isentropic initial condition having a
shock at x = 0.5. The mach number is linearly distributed before and after the
shock with the area of the cross-section, a(x), determined by a function of mach
number (see [4] for details).

In Figure 5, the numerical solution computed by our homotopy method using
the third order WENO scheme is compared with the exact solution. One can
clearly see that the shock is resolved well. We also analyze the convergence speed
by displaying the numerical solutions and the history of residues in Figure 6. In
particular, this shows that homotopy method approaches the exact solution in
only 27 steps.
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Figure 5: Nozzle flow problem with 100 grid points. The numerical solutions
correspond to ǫ = 0.1, 0.005, and 0, respectively.
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Figure 6: Convergence of nozzle flow problem with 100 grid points. The maxi-
mum stepsize is 1/10.

4.3 Two-dimensional scalar problem

Consider the steady state problem for the two-dimensional Burgers equation
with a source term

ut +

(
1√
2

u2

2

)

x

+

(
1√
2

u2

2

)

y

= sin

(
x + y√

2

)
cos

(
x + y√

2

)
,

(x, y) ∈
[
0,

π√
2

]
×

[
0,

π√
2

]

with initial conditions

u(x, y, 0) = β sin

(
x + y√

2

)
.

The boundary conditions are taken to satisfy the exact solution of the steady
state problem. The one-dimensional problem in Example 4.1.1 arises along the
northeast-southwest diagonal line. For this example we take β = 1.5, which

gives a smooth steady state solution u(x, y,∞) = sin

(
x + y√

2

)
. The numerical

results shown in Table 4 clearly show that third order accuracy is achieved.
Figure 7 displays information regarding β = 2 and β = 0.5. In particular, this
shows that the correct shock location is obtained in 14 steps for β = 0.5.
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Table 4: Errors and numerical orders of accuracy with WENO3 scheme for
Example 4.3 with N × N points

N × N L1 error Order L∞ error Order computing time
homotopy time marching

20 × 20 3.49e-3 – 8.69e-3 – 1.13s 5.37s
40 × 40 4.95e-4 2.31 1.32e-3 2.72 4.32s 18.04s
80 × 80 6.33e-5 2.97 2.74e-4 2.92 21.58s 100.25s

160 × 160 7.62e-5 3.05 3.49e-5 2.97 103.40s 948.68s
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Figure 7: Example 4.3 with 80 × 80 grid points. Top left: contour plot of
solution for β = 0.5; Top right: the numerical solutions with different ǫ versus
the exact solution along the cross section through the northeast to southwest
diagonal for β = 0.5; Bottom: the convergence of solutions for β = 0.5 and
β = 2 respectively.

4.4 Two-dimensional systems

4.4.1 Cauchy–Riemann problem

We consider the Cauchy-Riemann problem

∂W

∂t
+ A

∂W

∂x
+ B

∂W

∂y
= 0, (x, y) ∈ [−2, 2]× [−2, 2], t > 0, (4.15)
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where

A =

(
1 0
0 −1

)
and B =

(
0 1
1 0

)

with the following Riemann data W = (u, v)T :

u =





1 if x > 0 and y > 0,
−1 if x < 0 and y > 0,
−1 if x > 0 and y < 0,
1 if x < 0 and y < 0,

and v =





1 if x > 0 and y > 0,
−1 if x < 0 and y > 0,
−1 if x > 0 and y < 0,
2 if x < 0 and y < 0.

The solution is self-similar and therefore we can simplify the problem. For
W (x, y, t) = W̃

(
x
t , y

t

)
, (4.15) can be rewritten as

∂

∂ξ

[
(−ξI + A)W̃

]
+

∂

∂η

[
(−ηI + B)W̃

]
= −2W̃ , (4.16)

where ξ = x
t and η = y

t . We consider the system (4.16) as a steady state system
and with time t = 1. The the shock location of the Riemann data is propagated
from the origin to (1, 1) and (−1, 1) for u and v, respectively. The boundary
conditions are given by the Riemann data after the shift of the shock location.
The numerical results are shown in Figure 8 and Figure 9.
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Figure 8: Cauchy-Riemann problem with 50× 50 grid points.

4.4.2 Two-dimensional Euler equations

Our last example is a regular shock reflection problem of the steady state solu-
tion of the two-dimensional Euler equations:

ut + (f(u))x + (g(u))y = 0, (x, y) ∈ [0, 4] × [0, 1], (4.17)
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Figure 9: Convergence of example 4.4.1. The maximum stepsize is 1/10.

where u = (ρ, ρu, ρv, E)T , f(u) = (ρu, ρu2 + p, ρuv, u(E + p))T , and g(u) =
(ρv, ρuv, ρv2 +p, v(E+p))T . Here ρ is the density, (u, v) is the velocity, E is the
total energy and p = (γ − 1)(E − 1

2 (ρu2 + ρv2)) is the pressure. The constant
γ is the gas constant which is taken as 1.4 in our numerical tests.

The initial conditions are

(ρ, u, v, p) = (1.69997, 2.61934,−0.50632, 1.52819) on y = 1,

(ρ, u, v, p) =

(
1, 2.9, 0,

1

γ

)
otherwise

with boundary conditions

(ρ, u, v, p) = (1.69997, 2.61934,−0.50632, 1.52819) on y = 1,

and reflective boundary condition on y = 0. The left boundary at x = 0 is set
as an inflow with (ρ, u, v, p) =

(
1, 2.9, 0, 1

γ

)
, and the right boundary at x = 4

is set to be an outflow with no boundary conditions prescribed. The numerical
solutions obtained using the homotopy method with the WENO third order
scheme are displayed in Figure 10. It can be clearly seen that the incident
and reflected shocks are well-resolved. Figure 11 shows the convergence of the
solution.

5 Conclusion

In this article, we have designed a homotopy approach based on WENO finite
difference schemes for computing steady state solutions of conservation laws in
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Figure 10: Shock reflection for the density and the energy respectively with
100 × 25 grid points.

one and two dimensional spaces. The homotopy continuation method is often
computationally less expensive and very useful to handle systems with multi-
ple steady states. Moreover, this homotopy method is free of CFL condition
constraint. Using the above proposed algorithm as a beginning step, generaliza-
tion of the technique to three-dimensional problems and utilizing discontinuous
Galerkin (DG) methods are straightforward and will be carried out in the future.
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